The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing.
نویسندگان
چکیده
Splicing of the Saccharomyces cerevisiae mitochondrial DNA group II intron aI2 depends on the intron-encoded 62-kDa reverse transcriptase-maturase protein (p62). In wild-type strains, p62 remains associated with the excised intron lariat RNA in ribonucleoprotein (RNP) particles that are essential for intron homing. Studies of a bacterial group II intron showed that the DIVa substructure of intron domain IV is a high-affinity binding site for its maturase. Here we first present in vitro evidence extending that conclusion to aI2. Then, experiments with aI2 DIVa mutant strains show that the binding of p62 to DIVa is not essential for aI2 splicing in vivo but is essential for homing. Because aI2 splicing in the DIVa mutant strains remains maturase dependent, splicing must rely on other RNA-protein contacts. The p62 that accumulates in the mutant strains has reverse transcriptase activity, but fractionation experiments at high and low salt concentrations show that it associates more weakly than the wild-type protein with endogenous mitochondrial RNAs, and that phenotype probably explains the homing defect. Replacing the DIVa of aI2 with that of the closely related intron aI1 improves in vivo splicing but not homing, indicating that DIVa contributes to the specificity of the maturase-RNA interaction needed for homing.
منابع مشابه
High-affinity binding site for a group II intron-encoded reverse transcriptase/maturase within a stem-loop structure in the intron RNA.
Mobile group II introns encode proteins that have reverse transcriptase and maturase activities and bind specifically to the intron RNA to promote both RNA splicing and intron mobility. Previous studies with the Lactococcus lactis Ll.LtrB intron showed that the intron-encoded protein (LtrA) has a high-affinity binding site in intron subdomain DIVa, an idiosyncratic structure containing the tran...
متن کاملMultiple homing pathways used by yeast mitochondrial group II introns.
The yeast mitochondrial DNA group II introns aI1 and aI2 are retroelements that insert site specifically into intronless alleles by a process called homing. Here, we used patterns of flanking marker coconversion in crosses with wild-type and mutant aI2 introns to distinguish three coexisting homing pathways: two that were reverse transcriptase (RT) dependent (retrohoming) and one that was RT in...
متن کاملMobility of Yeast Mitochondrial Group II Introns: Engineering a New Site Specificity and Retrohoming via Full Reverse Splicing
The mobile group II introns aI1 and aI2 of yeast mtDNA encode endonuclease activities that cleave intronless DNA target sites to initiate mobility by target DNA-primed reverse transcription. For aI2, sense-strand cleavage occurs mainly by a partial reverse splicing reaction, whereas for aI1, complete reverse splicing occurs, leading to insertion of the linear intron RNA into double-stranded DNA...
متن کاملThe Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities
Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but ...
متن کاملGroup II intron mobility occurs by target DNA-primed reverse transcription
Mobile group II introns encode reverse transcriptases and insert site specifically into intronless alleles (homing). Here, in vitro experiments show that homing of the yeast mtDNA group II intron aI2 occurs by reverse transcription at a double-strand break in the recipient DNA. A site-specific endonuclease cleaves the antisense strand of recipient DNA at position +10 of exon 3 and the sense str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 23 23 شماره
صفحات -
تاریخ انتشار 2003